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Probing Anderson localization of light via decay rate statistics
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We have studied the distribution of resonance widthsP(G) in one-, two-, and three-dimensional multiple
light scattering systems.P(G) should follow a universal power lawP(G);G21 in the localized regime as
confirmed by extensive numerical calculations. This behavior can be interpreted as an unambiguous signature
of exponential Anderson localization of light in open systems.
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The research on Anderson localization of light has been
great interest@1# since it was originally proposed as the o
tical counterpart of electronic localization@2#. Localization,
as proposed by Anderson, is defined as an inhibition of w
diffusion in infinite disordered media due to interference
multiple scattered waves@3#. A much stronger definition is
that the eigenfunctions in an infinite disordered medium
characterized by an exponential decay in space,uc(r )u
;exp(2ur2r 8u/j), wherej is the localization length. In fi-
nite, open media, waves can ‘‘leak’’ through the samp
boundaries. Anderson localization must thus relate to m
festations of leakage in observables quantities. For opt
systems, they are typically the emerging intensity, the to
transmission, or the coherent backscattering cone. The ob
vation of an exponential scaling of transmission@4,5#, as
well as the rounding of the backscattering cone@6#, may not
have definitively established localization since absorpt
could be responsible for these same effects.

There are several criteria to determine the onset of
localized regime. The Ioffe-Regel criterion states that,
three dimensions~3D!, localization occurs fork,;1 ~with k
the light wave number inside the medium and, the mean
free path!. Another approach observes electromagnetic loc
ization from the variance of fluctuations of transmissio
even in the presence of absorption@7#. In open systems, the
‘‘eigenstates’’ are resonances with a finite energy widthG
~or, equivalently, with a finite lifetimet;1/G) due to leak-
age. The Thouless criterion asserts that localization can
said to occur when the typical time that an excitation ne
to propagate through the entire system of sizeR, tT;1/GT
;R2/D ~Thouless time!, exceeds the maximal time scale
the system,tH;1/GH;1/DE ~Heisenberg time! @8#. HereD
is the diffusion constant andDE the mean level spacing.

This Thouless criterion applies to theaverage leakage
width. Hence it is reasonable to assume that thestatistical
propertiesof resonance widths are strongly affected by
calization. The aim of the present paper is to investigate h
localization manifests itself in the distribution of resonan
widthsP(G) in multiple light scattering in open systems. W
will show that P(G) exhibits the universal power law
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P(G);G21 in 1D, 2D, and 3D optical disordered system
thereby generalizing recent theoretical@9# and numerical
@10# studies in 1D models of mesoscopic transport. We as
that the algebraic decayP(G);G21 represents a universa
property of Anderson localization of light in open systems
any dimension.

Although the statistical properties of resonance widths
open systems have been extensively studied over the
years, in particular for chaotic/ballistic systems@11–13#,
their behavior for disordered systems exhibiting localizat
has received considerably less attention. As argued by Ca
et al., P(G) should follow a power lawP(G);G21 in local-
ized, classically chaotic systems@14#. P(G) was analytically
obtained for 1D disordered systems, showing a slightly d
ferent power lawP(G);G21.25 @9#. This prediction was cor-
roborated later by numerical calculations in 1D and quasi-
tight binding models@10#. The P(G);G21 behavior was
also reported in 1D and 3D strongly driven atomic Rydbe
states in the context of dynamical localization@15#. Exactly
at the Anderson transition@16# and in the diffusive regime
@17#, P(G) was shown to follow a power law with a powe
different from21. Concerning the study ofP(G) for optical
systems, the only work on the subject is, to the best of
knowledge, due to Patra@18#, who mainly focused on the
small G regime and its application to random lasers. F
smallG ~i.e., for G&^G&), it is known thatP(G) is different
from a power law, for both the diffusive@12,18# and the
localized@13,18# regimes. It should be emphasized that t
power law decay ofP(G) is expected to occur only forG
*^G&, with typically ^G&;GT in the diffusive regime and
^G&;exp(2R/j) in the localized regime. However, for ver
largeG (G@^G&) the resonances are strongly coupled to
continuum andP(G) decays faster than algebraically, both
the diffusive@17# and in the localized@9,10# regimes.

We will present a simple physical argument, inspired
Refs.@9,10,14#, to explain theuniversal P(G);G21 behav-
ior for the localized regime, i.e., independent of the dime
sionality of the system. Due to the opening of the syste
exponentially localized eigenstates of the correspond
closed system~linear sizeR) acquire a finite frequency width
G8, G8;e22r 8/j, with r 8 the distance to the boundarie
Near the system boundaries, the leakage is strong and
resonances are broad compared toGT . On the other hand, fa
©2004 The American Physical Society05-1
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from the boundaries the leakage is small and the typicalG in
this region is much smaller thanGT . Assuming that the reso
nances are—like the scatterers—uniformly distributed
space, it follows that the~integrated! probability of finding a
resonance widthG smaller thanG8, Pint(G,G8), is equal to
the probability of finding a resonance situated at a distanr
from the boundaries larger thanr 8, P(r .r 8), i.e., Pint(G
,G8)5P(r .r 8). SinceP(r .r 8)}md(R2r 8)/md(R) with
md the d-dimensional volume, we conclude that the proba
ity density is

P~G8!5
dr8

dG8

d

dr8
@P~r .r 8!#}2

j

G8

d

dr8
Fmd~R2r 8!

md~R! G .
~1!

The purely geometrical factord/dr8@md(R2r 8)/md(R)# de-
pends on the dimensionality of the system but does not af
the exponent inG.

To test the validity of Eq.~1! for Anderson localization of
light, we will consider scalar wave propagation in disorder
media using the method introduced by Rusek and Orlow
@19,20#. This approach is based on the analysis of the sp
trum of the Green matrix, which describes light scatter
from randomly distributed pointlike dipoles~i.e., particles
much smaller than the wavelength of light!. For an incident
plane wavec0(r ) in a system ofN identical dipoles with
scattering matrixt, the field acting in the dipole atr i is given
by @19,20#:

c~r i !5c0~r i !1t(
j Þ i

N

G~r i j !c~r j !. ~2!

The complex-valuedN3N matrix G(r i j ) describes light
propagation of the wave scattered by the dipole atr i to the
dipole atr j . Since the eigenvalueslM of M[I2tG andlG
of G are related bylM512tlG , and t depends on fre-
quencyv via the scattering phase shiftd(v) @21#, an eigen-
value lG with RelG521 will facilitate an appropriate
choice ford(v) such thatlM50. This would correspond to
a genuinely localized state somewhere inside the rand
medium@19#. Assuming a Breit-Wigner model for the sca
terers~with one sharp resonance of widthG0 at the position
v0), for which d(v) has a simple form, it is possible t
obtain, in a good approximation, the resonance widthsG via
lG , G/G0.11RelG @20#. We will numerically diagonalize
G in 1D, 2D, and 3D and calculate the distribution of res
nance widthsP(G) using the above approximation.

It is interesting to compare the typical values of the re
nance widthsG to the Thouless frequencyGT . To estimate
GT let us recall thatGT51/tT52dDB /R2, whereDB is the
Boltzmann diffusion constant andd the dimension of the
system. The Boltzmann diffusion constant is given byDB
5vE,* /d, where,* is the transport mean free path~which
is, for point scatterers, equal to,) andvE the energy trans-
port velocity, vE'c0 /@11tdwell /tm f# @22#, with tdwell
51/G0 the dwell time in a single scattering andtm f5,/c0
the mean free time. The mean free path is given by,
51/nsd , with n the density of scatterers andsd the (d
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21)-dimensional cross section of a single point scatterer.
plying these considerations,GT can be written asGT /G0
;2(,/R)2. In what follows, we will always compare th
values ofG to GT .

In Fig. 1, P(G) is calculated for 1D systems composed
100 randomly distributed scatterers in a linear segment
two different values of the uniform optical densityr: r51
and r510 scatterers per wavelength. In 1D, all eigensta
are known to be exponentially localized even for weak d
order andj is of the order of the mean free path,. P(G) is
seen to exhibit a power law with an exponent very close
21, in good agreement with Eq.~1!. In addition, the expo-
nent does not change by increasingr, i.e., by decreasingj.
This demonstrates that the algebraic decayP(G);G21 in
the localized regime is valid not only for 1D models of m
soscopic transport@9,10#, but also for our model of wave
propagation in disordered media. At largeG, P(G) decays
faster than algebraically. This can be explained by the f
that this region is dominated by short living resonances, ty
cally close to the boundaries, for which the prediction~1!
breaks down. To compare the values ofG to the Thouless
frequencyGT , let us recall that the~dimensionless! cross
section of a point scatterer in 1D is simply the reflecti
coefficient. This implies that on resonance,GT /G0
;2(,/R)252/N2 with N the number of scatterers. ForN
5100 as in Fig. 1, we haveGT /G0.0.0002, showing that
the values ofG in Fig. 1 are far above the Thouless fre
quencyGT . The Thouless frequencyGT does not represen
the appropriate characteristic decay rate for 1D systems s
diffusion never occurs.

Figure 2 showsP(G) for 2D systems containingN
52500 scatterers randomly distributed in aR3R square for
r51 andr510 scatterers per wavelength squared. In 2D

FIG. 1. The normalized distribution of resonance widthsP(G)
calculated for 1000 different configurations of 100 point scatter
randomly distributed in a 1D segment with two different values
the uniform optical densityr, r51 ~full squares! andr510 ~open
circles! scatterers per wavelength. The dashed line correspond
the predictionP(G);G21 for the localized regime and the soli
lines are just to guide the eyes. The values ofG are normalized by
the resonance width of a single dipoleG0. The value of the Thou-
less frequency for resonant scatterers isGT /G052/N2.0.0002.
5-2
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principle all eigenstates are exponentially localized but
localization lengthj may be macroscopically large for low
disorder according to@23#

j.,exp~pke,/2!, ~3!

with ke the effective wave number, which takes into accou
renormalized diffusion. Localization is expected to occ
whenj is smaller than the system sizeR. TheG21 decay of
P(G) in Fig. 2 is clearly visible for both values ofr used,
with an exponent very close to21, in excellent agreemen
with Eq. ~1!. Notice that the range of the power law broade
asr increases. Increasingr means decreasing, and, accord-
ing to Eq.~3!, a rapidly decreasingj. The range of the alge
braic decayP(G);G21 is expected to be broader as mo
and more states become localized. Such a behavior was
reported in numerical calculations within the Anders
model @10#. For largeG, P(G) decays again faster than a
gebraically as in the 1D case. To confirm that the system
indeed in the localized regime, let us estimate the ratioj/R
from Eq.~3!. Since,/R5p/(2ANr), the system can be sai
to be localized (j/R,1) whenke,'2 for N52500 and for
both values ofr (r51 andr510) used in Fig. 2. This value
of ke, is not too far from the ‘‘bare’’ estimates for the valu
of k,5p2/r in Fig. 2: k,'10 for r51 andk,'1 for r
510, where we use the vacuum wave numberk52p/l and
not the effective wave numberke . We conclude that the
localized scenario is valid. Consequently, the Thouless
quencyGT is not the appropriate characteristic decay rate
this case, as in 1D. For resonant scatterers in 2D, the rat
GT to G0 is GT /G0;2(,/R)25p2/2Nr. For the values used
in Fig. 2, we haveGT /G0.0.002 andGT /G0.0.0002, cor-
responding tor51 andr510, respectively.

In Fig. 3 the 3D case is considered, whereP(G) is calcu-
lated for systems composed by 1000 point scatterers

FIG. 2. P(G) calculated for up to 50 configurations of 250
scatterers randomly distributed in a square forr51 ~full squares!
and r510 ~open circles! scatterers per wavelength squared. T
normalization ofG, as well as the significance of the solid an
dashed lines, is the same as in Fig. 1. The value of the Thou
frequency for resonant scatterers isGT /G0.0.002 andGT /G0

.0.0002 forr51 andr510, respectively.
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domly distributed in a sphere~radiusR) for r51, r510,
r530, andr560 scatterers per wavelength cubed. In 3
the system is expected to undergo, upon varying the de
of disorder, a transition from extended states to localiz
states. It is therefore interesting to investigate if and how t
transition manifests itself inP(G). As in the 2D case, we
notice that, asr increases, the range of the algebraic dec
P(G);G2a increases. We also remark that, asr increases,
the associated exponents tend more and more to the va
21. The exponents, obtained by a linear fit in the ran
where the power law is present, area'0.76 for r51, a
'0.83 for r510, a'0.95 for r530, and a'1.1 for r
560. This suggests, according to Eq.~1!, the onset of the
localized regime for higherr. In fact, the Ioffe-Regel crite-
rion for localization (k,,1) is estimated to be satisfied fo
r.2p2'20 for scatterers at resonance. This condition
fulfilled for r530 andr560, for whicha is very close to 1,
showing that the systems with these densities are indee
the localized regime and confirming that the power la
P(G);G21 can be considered a genuine signature of And
son localization of light. We anticipate that forN,R→` at
constantr, the transition from the localized regime (a51)
to the diffusive regime will become even more evident. On
again, note thatP(G) decays faster than a power law fo
very largeG.

In 3D, the Thouless frequencyGT is the real characteristic
internal decay rate of system since here there is a real d
sive regime, in contrast to the 1D and 2D cases. For
reason, we exhibit in Fig. 4P(G) for the same optical den
sities of Fig. 3 but now withG normalized to the Thoules
frequency GT , with GT given by GT /G052(,/R)2

52(4p/3)2/3@p/(N1/3r2/3)#2. For low r (r51 andr510),
P(G) is peaked nearGT , showing that the system is in th
diffusive regime. Notice that there is a nonvanishing pro
ability to find modes that live much longer thantT even in

ss

FIG. 3. P(G) calculated for 100 configurations of 1000 scatte
ers randomly distributed in a sphere forr51 ~full squares!, r
510 ~open circles!, r530 ~full triangles!, and r560 ~open dia-
monds! scatterers per wavelength cubed. The normalization ofG, as
well as the significance of the solid and dashed lines, is the sam
in Fig. 1.
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the diffusive regime, the so-called ‘‘prelocalized’’ mode
@24#. As r increases, we observe thatP(G) is no longer
centered atGT and that the probability to find a mode wit
resonance width smaller thanGT also increases. This mean
that, on average, the modes live longer thantT . At the same
time, Fig. 3 shows that localization manifests itself inP(G)
not only via the broadening of the power law range but a

FIG. 4. P(G) as in Fig. 3, but nowG is normalized by the
Thouless frequencyGT .
a-

e

02660
o

via the fact that the associated exponents approach to21.
We conclude again that theP(G);G21 behavior is an un-
ambiguous signature of Anderson localization of light
open media. It must be mentioned that the present 3D st
may be relevant for recent multiple light scattering expe
ments in atomic media@25#, for which modeling the scatter
ers by pointlike dipoles constitutes an excellent approxim
tion, though with a varying densityr.

In summary, we have studied the distribution of resona
widths P(G) in 1D, 2D, and 3D multiple light scattering
systems composed of randomly distributed pointlike sca
dipoles. We have developed a simple physical argum
based on the exponential decay of localized eigenfunctio
to show thatP(G) should follow a universal power law
P(G);G21 decay in the localized regime. This predictio
was confirmed by extensive numerical calculations and d
onstrates that theP(G);G21 behavior can be interpreted a
an unambiguous signature of Anderson localization of lig
in open media.

Most of the computations presented in this paper w
performed on the cluster PHYNUM~CIMENT, Grenoble!.
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financial support.
tt.

. A
-

-

d

@1# For a recent overview, see, for instance,Wave Scattering in
Complex Media, from Theory to Applications, edited by S. E.
Skipetrov and B. A. van Tiggelen~Kluwer, Dordrecht, 2003!;
B. A. van Tiggelen, inWave Diffusion in Complex Media, ed-
ited by J.-P. Fouque~Kluwer, Dordrecht, 1999!.

@2# S. John, Phys. Rev. Lett.53, 2169~1984!.
@3# P.W. Anderson, Phys. Rev.109, 1492~1958!.
@4# A.Z. Genack and N. Garcia, Phys. Rev. Lett.66, 2064~1991!.
@5# D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, N

ture ~London! 390, 671 ~1997!; F. Scheffold, R. Lenke, R.
Tweer, and G. Maret,ibid. 398, 207 ~1999!; D.S. Wiersma,
J.G. Rivas, P. Bartolini, A. Lagendijk, and R. Righini,ibid.
398, 207 ~1999!.

@6# F.J.P. Schuurmans, M. Megens, D. Vanmaekelbergh, and
Lagendijk, Phys. Rev. Lett.83, 2183~1999!.

@7# A.A. Chabanov, M. Stoytchev, and A.Z. Genack, Nature~Lon-
don! 404, 850 ~2000!.

@8# D.J. Thouless, Phys. Rep.13, 93 ~1974!.
@9# M. Titov and Y.V. Fyodorov, Phys. Rev. B61, R2444~2000!.

@10# M. Terraneo and I. Guarneri, Eur. Phys. J. B18, 303 ~2000!.
@11# T. Kottos and U. Smilansky, Phys. Rev. Lett.85, 968 ~2000!.
@12# Y.V. Fyodorov and H-J. Sommers, J. Math. Phys.38, 1918

~1997!.
@13# H-J. Sommers, Y.V. Fyodorov, and M. Titov, J. Phys. A32,

L77 ~1999!.
@14# G. Casati, G. Maspero, and D.L. Shepelyansky, Phys. R

Lett. 82, 524 ~1999!.
A.

v.

@15# S. Wimberger, A. Krug, and A. Buchleitner, Phys. Rev. Le
89, 263601~2002!.

@16# T. Kottos and M. Weiss, Phys. Rev. Lett.89, 056401~2002!.
@17# F. Borgonovi, I. Guarneri, and D. Shepelyansky, Phys. Rev

43, 4517 ~1991!; A. Ossipov, T. Kottos, and T. Geisel, Euro
phys. Lett.62, 719 ~2003!.

@18# M. Patra, Phys. Rev. E67, 016603~2003!; M. Patra,ibid. 67,
065603~R! ~2003!.

@19# M. Rusek and A. Orlowski, Phys. Rev. E51, R2763~1995!; M.
Rusek, A. Orlowski, and J. Mostowski,ibid. 53, 4122~1996!;
56, 4892 ~1997!; M. Rusek and A. Orlowski,ibid. 59, 3655
~1999!.

@20# M. Rusek, J. Mostowski, and A. Orlowski, Phys. Rev. A61,
022704~2000!.

@21# The t(v) matrix relates to the phase shiftd(v) according to
t(v)5a$exp@2id(v)#21%, with a a real-valued constant. Actu
ally, G is the dimensionless Green matrix inD dimensions~see
Ref. @19#!.

@22# A. Lagendijk, and B.A. van Tiggelen, Phys. Rep.270, 143
~1996!.

@23# P. Sheng,Introduction to Wave Scattering, Localization, an
Mesoscopic Phenomena~Academic Press, San Diego, 1995!.

@24# B.A. Muzykantskii and D.E. Khmelnitskii, Phys. Rev. B51,
5480 ~1995!; Y.V. Fyodorov and A. Mirlin, ibid. 51, 13 403
~1995!; V.I. Falko and K.B. Efetov,ibid. 52, 17 413~1995!.

@25# G. Labeyrieet al., Phys. Rev. Lett.83, 5266~1999!; Y. Bidel,
et al., ibid. 88, 203902~2002!.
5-4


