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Probing Anderson localization of light via decay rate statistics
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We have studied the distribution of resonance wid®{$’) in one-, two-, and three-dimensional multiple
light scattering system$2(I") should follow a universal power law(I')~I""1 in the localized regime as
confirmed by extensive numerical calculations. This behavior can be interpreted as an unambiguous signature
of exponential Anderson localization of light in open systems.
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The research on Anderson localization of light has been oP(I')~T""! in 1D, 2D, and 3D optical disordered systems,
great interesf1] since it was originally proposed as the op- thereby generalizing recent theoretid®] and numerical
tical counterpart of electronic localizatig@]. Localization, [10] studies in 1D models of mesoscopic transport. We assert
as proposed by Anderson, is defined as an inhibition of wavenat the algebraic decaly(I')~T ~* represents a universal
diffusion in infinite disordered media due to interference Ofproperty of Anderson localization of light in open systems of
multiple scattered wavei3]. A much stronger definition is  any dimension.
that the eigenfunctions in an infinite disordered medium are Ajthough the statistical properties of resonance widths in
characterized by an exponential decay in spdeér)|  gpen systems have been extensively studied over the last
~exp(-|r—r'[/§), where¢ is the localization length. In fi- years in particular for chaotic/ballistic systerfisl—13,
nite, open media, waves can ‘leak” through the sample y,qi penavior for disordered systems exhibiting localization

bounQarles. Anderson .Iocallzanon must thuslrelate t0 MaNip 5 veceived considerably less attention. As argued by Casati
festations of leakage in observables quantities. For optical g

: S ! t al, P(I") should follow a power lawP(I")~T""" in local-
systems, they are typically the emerging intensity, the tot

transmission, or the coherent backscattering cone. The obsé?—ecj’. classically chaonc systerf4]. P(I') was analypcally .
vation of an exponential scaling of transmissiph5], as obtained for 1D dlsorder(_a(iiziystems., show'lng a slightly dif-
well as the rounding of the backscattering 6k may not ~ ferent power lawP(I')~I'~+<*[9]. This prediction was cor-
have definitively established localization since absorptiorfoPorated later by numerical calculations in 1D and quasi-1D
could be responsible for these same effects. tight binding models[10]. The P(I')~T~* behavior was
There are several criteria to determine the onset of th@lso reported in 1D and 3D strongly driven atomic Rydberg
localized regime. The loffe-Regel criterion states that, instates in the context of dynamical localizatidrb|. Exactly
three dimension43D), localization occurs foké~1 (with k @t the Anderson transitiofil6] and in the diffusive regime
the light wave number inside the medium afidhe mean [17], P(I') was shown to follow a power law with a power
free path. Another approach observes electromagnetic localdifferent from—1. Concerning the study &*(I") for optical
ization from the variance of fluctuations of transmission,systems, the only work on the subject is, to the best of our
even in the presence of absorptid. In open systems, the knowledge, due to Patrel8], who mainly focused on the
“eigenstates” are resonances with a finite energy witith small I' regime and its application to random lasers. For
(or, equivalently, with a finite lifetimé~1/1") due to leak- smalll’ (i.e., forI'=(I')), it is known thatP(T') is different
age. The Thouless criterion asserts that localization can b&mM a power law, for both the diffusivgl2,18 and the
said to occur when the typical time that an excitation needdocalized[13,18 regimes. It should be emphasized that the
to propagate through the entire system of dza;~1/T;  Power law decay oP(I') is expected to occur only fof
~R2/D (Thouless timg exceeds the maximal time scale of =(I'), with typically (I')~T'y in the diffusive regime and
the systemt,~ 1Ty~ 1/AE (Heisenberg time[8]. HereD  (I')~exp(=R/¢) in the localized regime. However, for very
is the diffusion constant andE the mean level spacing.  largel’ (I'>(I")) the resonances are strongly coupled to the
This Thouless criterion applies to theverageleakage continuum and®(I') decays faster than algebraically, both in
width. Hence it is reasonable to assume that stegistical ~ the diffusive[17] and in the localized9,10] regimes.
propertiesof resonance widths are strongly affected by lo- We will present a simple physical argument, inspired by
calization. The aim of the present paper is to investigate hoviRefs.[9,10,14, to explain theuniversal RI')~I'~* behav-
localization manifests itself in the distribution of resonanceior for the localized regime, i.e., independent of the dimen-
widths P(T") in multiple light scattering in open systems. We sionality of the system. Due to the opening of the system,
will show that P(I') exhibits the universal power law €xponentially localized eigenstates of the corresponding
closed systenlinear sizeR) acquire a finite frequency width
I, T'~e "¢ with r’ the distance to the boundaries.
*Corresponding author. Email address: Near the system boundaries, the leakage is strong and the
felipe.pinheiro@grenoble.cnrs.fr resonances are broad comparefto On the other hand, far
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from the boundaries the leakage is small and the tygical F AN AR
this region is much smaller thdn; . Assuming that the reso- [
nances are—like the scatterers—uniformly distributed in 10" F
space, it follows that théntegrated probability of finding a i
resonance widtl' smaller tharl™’, P;,(I'<<I'’), is equal to -
the probability of finding a resonance situated at a distance 10°F
from the boundaries larger thari, P(r>r"), i.e., P; (T — i
<I'")=P(r>r"). SinceP(r>r")cug(R—r")/ uyg(R) with =

g the d-dimensional volume, we conclude that the probabil- 10° 3 3
ity density is i
=— —[P(r>r')]e— —— F
dr’ dr’ I’ dr'l #d(R) A
(1) 10" 10° 10’
1“/1“0

The purely geometrical factat/dr'[ uq(R—r')/ uq(R)] de-
pends on the dimensionality of the system but does not affect FIG. 1. The normalized distribution of resonance widehd")
the exponent id". calculated for 1000 different configurations of 100 point scatterers
To test the validity of Eq(1) for Anderson localization of randomly distributed in a 1D segment with two different values of
light, we will consider scalar wave propagation in disorderecthe uniform optical density, p=1 (full square$ andp=10 (open
media using the method introduced by Rusek and Orlowskgircles scatterers per wavelength. The dashed line corresponds to
[19,20. This approach is based on the analysis of the spedhe predictionP(I')~T'~* for the localized regime and the solid
trum of the Green matr'ix7 which describes ||ght Scatteringlines are jUSt to guide the eyes. The valued'adre normalized by
from randomly distributed pointlike dipole§.e., particles the resonance width of a single dipdl‘@._ The value of the Thou-
much smaller than the wavelength of lighEor an incident '€ss frequency for resonant scatterer§'{/T"y=2/N*~0.0002.
plane waveyy(r) in a system ofN identical dipoles with
scattering matrix, the field acting in the dipole af is given
by [19,20;:

—1)-dimensional cross section of a single point scatterer. Ap-
plying these considerationd,r can be written ad'{/T",
~2(¢/R)2. In what follows, we will always compare the
N values ofl" to I'.
P(r) = ,/,O(ri)ﬂz G(rij)(r)). 2 In Fig. 1, P(F)_ is.calculated for 1D systems composed of
j#i 100 randomly distributed scatterers in a linear segment for
two different values of the uniform optical density p=1
The complex-valuedNXN matrix G(rj;) describes light andp=10 scatterers per wavelength. In 1D, all eigenstates
propagation of the wave scattered by the dipole;ab the  are known to be exponentially localized even for weak dis-
dipole atr;. Since the eigenvalues, of M=I—tG and\g  order and¢ is of the order of the mean free path P(T") is
of G are related by, =1—tAg, andt depends on fre- seen to exhibit a power law with an exponent very close to
quencyw via the scattering phase shif{w) [21], an eigen- —1, in good agreement with Eql). In addition, the expo-
value Ag with Rehg=—1 will facilitate an appropriate nent does not change by increasingi.e., by decreasing.
choice ford(w) such thaiv,,=0. This would correspond to This demonstrates that the algebraic de€y’)~T "1 in
a genuinely localized state somewhere inside the randomme localized regime is valid not only for 1D models of me-
medium[19]. Assuming a Breit-Wigner model for the scat- soscopic transpoift9,10], but also for our model of wave
terers(with one sharp resonance of widlh at the position  propagation in disordered media. At larle P(I') decays
wo), for which 6(w) has a simple form, it is possible to faster than algebraically. This can be explained by the fact
obtain, in a good approximation, the resonance widithda  that this region is dominated by short living resonances, typi-
Ag, ['/T'p=1+Re\g [20]. We will numerically diagonalize cally close to the boundaries, for which the predictidn
G in 1D, 2D, and 3D and calculate the distribution of reso-breaks down. To compare the valuesIofto the Thouless
nance widths€P(I") using the above approximation. frequencyl';, let us recall that thédimensionlesscross
It is interesting to compare the typical values of the resosection of a point scatterer in 1D is simply the reflection
nance widthd" to the Thouless frequendy;. To estimate coefficient. This implies that on resonancd, /T
't let us recall thal’ ;= 1/;=2dDg/R? whereDg is the  ~2(¢/R)?=2/N? with N the number of scatterers. Fo
Boltzmann diffusion constant and the dimension of the =100 as in Fig. 1, we havE;/I'(=0.0002, showing that
system. The Boltzmann diffusion constant is givenDy  the values ofl" in Fig. 1 are far above the Thouless fre-
=vegl*/d, where¢* is the transport mean free pativhich  quencyl';. The Thouless frequendy; does not represent
is, for point scatterers, equal #) andvg the energy trans- the appropriate characteristic decay rate for 1D systems since
port velocity, ve~co/[1+ Tgwen! Tms] [22], with 744e1  diffusion never occurs.
=1/ the dwell time in a single scattering ang,;=¢/cg Figure 2 showsP(I') for 2D systems containing\
the mean free time. The mean free path is giventby =2500 scatterers randomly distributed ifRx R square for
=1/noy, with n the density of scatterers angy the (d  p=1 andp=10 scatterers per wavelength squared. In 2D, in
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FIG. 2. P(I') calculated for up to 50 configurations of 2500  FIG. 3. P(I") calculated for 100 configurations of 1000 scatter-
scatterers randomly distributed in a square gerl (full square$ ers randomly distributed in a sphere fpr=1 (full squares, p
and p=10 (open circley scatterers per wavelength squared. The=10 (open circley p=30 (full triangles, and p=60 (open dia-
normalization ofI’, as well as the significance of the solid and mondg scatterers per wavelength cubed. The normalizatidn, afs
dashed lines, is the same as in Fig. 1. The value of the Thoulesgell as the significance of the solid and dashed lines, is the same as
frequency for resonant scatterers Iig/I'4=0.002 andI';/T in Fig. 1.
=0.0002 forp=1 andp=10, respectively.

thedomly distributed in a sphergadiusR) for p=1, p=10,

W p=30, andp=60 scatterers per wavelength cubed. In 3D,
the system is expected to undergo, upon varying the degree
of disorder, a transition from extended states to localized

E=Lexp(mkol]2), ©) states. It is therefore interesting to investigate if and how this
transition manifests itself ifP(I"). As in the 2D case, we
with k, the effective wave number, which takes into accountnotice that, ap increases, the range of the algebraic decay
renormalized diffusion. Localization is expected to occurP(I')~I"~¢ increases. We also remark that, @increases,
when ¢ is smaller than the system siie Thel'~! decay of  the associated exponents tend more and more to the value

P(T") in Fig. 2 is clearly visible for both values gf used, —1. The exponents, obtained by a linear fit in the range

with an exponent very close te 1, in excellent agreement where the power law is present, atie=0.76 forp=1, «

with Eq. (1). Notice that the range of the power law broadens~0.83 for p=10, «~0.95 for p=30, anda~1.1 for p

asp increases. Increasingmeans decreasingand, accord- =60. This suggests, according to Hd), the onset of the

ing to Eq.(3), a rapidly decreasing. The range of the alge- |ocalized regime for highep. In fact, the loffe-Regel crite-

braic decayP(I')~T ! is expected to be broader as more rion for localization k€ <1) is estimated to be satisfied for
and more states become localized. Such a behavior was algo-272~20 for scatterers at resonance. This condition is

reported in numerical calculations within the Andersonfulfilled for p=30 andp=60, for whicha is very close to 1,

model[10]. For largel’, P(I") decays again faster than al- showing that the systems with these densities are indeed in

gebraically as in the 1D case. To confirm that the system ishe localized regime and confirming that the power law
indeed in the localized regime, let us estimate the rét®  P(I")~T"~* can be considered a genuine signature of Ander-
from Eq.(3). Since¢/R= /(2/Np), the system can be said son localization of light. We anticipate that fof,R— at

to be localized §/R<1) whenkgf~2 for N=2500 and for constantp, the transition from the localized regime:€ 1)

both values op (p=1 andp=10) used in Fig. 2. This value to the diffusive regime will become even more evident. Once

of ket is not too far from the “bare” estimates for the value again, note thaP(I") decays faster than a power law for

of k€ =m?/p in Fig. 2: k€~10 for p=1 andk€~1 for p  very largel .

=10, where we use the vacuum wave numker27/\ and In 3D, the Thouless frequendy; is the real characteristic

not the effective wave numbédt,. We conclude that the internal decay rate of system since here there is a real diffu-

localized scenario is valid. Consequently, the Thouless fresive regime, in contrast to the 1D and 2D cases. For this
qguencyl'; is not the appropriate characteristic decay rate irreason, we exhibit in Fig. £(I") for the same optical den-
this case, as in 1D. For resonant scatterers in 2D, the ratio &fties of Fig. 3 but now with™ normalized to the Thouless

IttolyisT1/Tg~2(¢/R)?>=m?/2Np. For the values used frequency I't, with T't given by I't/Ty=2({/R)?

in Fig. 2, we havd 1 /T"3=0.002 andl'1/T'4=0.0002, cor- = 2(4m/3)% =/(N¥3p?312. For lowp (p=1 andp=10),

responding tp=1 andp=10, respectively. P(I") is peaked neaF;, showing that the system is in the
In Fig. 3 the 3D case is considered, wh&@") is calcu-  diffusive regime. Notice that there is a nonvanishing prob-

lated for systems composed by 1000 point Scatterers rarability to find modes that live much longer thap even in

principle all eigenstates are exponentially localized but
localization lengthé may be macroscopically large for lo
disorder according tp23]
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10% Frrr ———ry — — via the fact that the associated exponents approach 1o
F° ° ] We conclude again that the(I')~I" " behavior is an un-
O ambiguous signature of Anderson localization of light in
10 3 open media. It must be mentioned that the present 3D study
may be relevant for recent multiple light scattering experi-
10°

ments in atomic medif25], for which modeling the scatter-
ers by pointlike dipoles constitutes an excellent approxima-

. s / ] tion, though with a varying density.
o 10 3

— Y In summary, we have studied the distribution of resonance
b b1 i ] widths P(I") in 1D, 2D, and 3D multiple light scattering
102k —o—p=10 1 4 systems composed of randomly distributed pointlike scalar
3 —*+—p=30 | dipoles. We have developed a simple physical argument,
o0 > p=60 1 based on the exponential decay of localized eigenfunctions,
0 = to show thatP(I') should follow a universal power law
10 10 10 1 . . . : -
y P(I')~T""+* decay in the localized regime. This prediction
AR was confirmed by extensive numerical calculations and dem-
FIG. 4. P(T i Fid. 3. but nowl" | lized by th onstrates that thB(I") ~T"~ ! behavior can be interpreted as
- 4. P() as in Fig. 3, but nowl” is normalized by the an unambiguous signature of Anderson localization of light
Thouless frequency/ ;.

in open media.

the diffusive regime, the so-called “prelocalized” modes Most of the computations presented in this paper were
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